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1 Introduction

This document serves as a guide to 2022’s CAPP Camp lessons in linear algebra. The goal of CAPP
Camp is to prepare incoming CAPP students for their linear algebra coursework by reviewing some founda-
tional concepts, with a particular emphasis on the mechanics of working simple matrix and vector operations.
Along with calculus and statistics, linear algebra is one of the most useful branches of applied mathematics,
particularly for understanding many common machine learning techniques and for processing data efficiently.
I will try to supplement the mathematics with CAPP-relevant examples, where possible.

These notes do not presuppose any particular math background other than a familiarity with high school
algebra. For some students with a stronger math background, these notes may mostly cover material they are
familiar with. I have included a few extra “challenge problems” for these students to test their understanding
of the concepts. Many of the practice questions are adapted from Gilbert Strang’s book, Linear Algebra
for Everyone, and the material itself loosely follows the first chapter of that book. Another useful resource
is Stephen Boyd and Lieven Vandenberghe’s book Introduction to Applied Linear Algebra, which is freely
available online. Lastly, for visual learners, I recommend Grant Sanderson’s series of YouTube videos on
linear algebra.

2 Introduction to Mathematical Proofs

Before diving into linear algebra, I want to familiarize you with the basics of mathematical proofs. In
many high school and some undergrad math courses, we are simply asked to perform some mechanical cal-
culations using formulas given to us by professors. In advanced math courses, we are more concerned with
proving broad, generalized statements.

Often times, we can structure it as saying that conditions A imply result B. For example, we know the
Pythagorean theorem gives us a formula for right triangle side lengths a2 + b2 = c2. If we wanted to prove
the Pythagorean theorem, we would need to show that for arbitrary side lengths a and b of a right triangle
(this is our condition A), we always have hypotenuse of length c =

√
a2 + b2 (this is our result B). We can

write this as A =⇒ B, which we describe as “A implies B.”

How do we show A =⇒ B? There are often many ways to prove something, but I will describe a few
common techniques:

1. Direct proof : This is the most intuitive way people attempt to approach proofs. We begin with
condition(s) A and, step-by-step, use existing facts or definition to arrive at result B.

For example, we can prove that the sum of any two even integers is even through a short direct
proof. Consider any two even integers x, y. Since they are even, they can be written as x = 2a and

∗Please direct any questions or comments to me at sbuschbach@uchicago.edu
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y = 2b for some a, b. Then their sum can be written x+ y = 2a+ 2b = 2(a+ b). Since x+ y = 2(a+ b),
the sum of x and y is divisible by 2, and thus it is also an even number.

2. Proof by contradiction: In this sort of proof, we assume that A holds but that B does not hold,
and then we show that it leads to some contradiction or nonsense. Since A holding and B not holding
leads to a contradiction, it must therefore be that A =⇒ B. This is one of those most common sorts
of proof you will see after direct proofs.

As an example, consider the statement “There is no smallest rational number greater than 0.” We can
suppose that there was some rational number x that is the smallest rational number greater than 0.
Since x is rational, it can be written x = p

q . But if we consider y = p
2q , this is a rational number that

is smaller than x. So it cannot be that x is the smallest rational number greater than 0. Therefore,
there is no smallest rational number greater than 0.

3. Proof by induction: You will use this style of proof a lot if you take Discrete Math. It commonly is
used when we want to prove a statement A =⇒ B for an infinite number of cases. If we can show that
the statement holds for some “base case”, and then use logical induction to establish a relationship
between each case, we can set off a mathematical chain of dominoes that proves the statement for
every case.

As an example, consider the statement “for all positive integers n, the integer 2n− 1 is odd.” This is
very easy to show for n = 1, since 2(1)− 1 = 1 is trivially odd. So we use n = 1 as our base case. For
our inductive step, we assume that the statement holds for some integer n and show that this implies
it is also true for n+1. In other words, we want to show that 2n−1 being odd implies that 2(n+1)−1
is odd. First note that 2(n + 1) − 1 = 2n + 1 = (2n − 1) + 2. Since we are assuming that 2n − 1 is
odd, and adding 2 to any odd number gives us another odd number, then it must be that 2(n+ 1)− 1
is odd. So with our base case of n = 1, the inductive step shows that this statement holds for n = 2,
which then shows that it holds for n = 3, which then shows it holds for n = 4, and so on ad infinitum.

4. Proof by contrapositive: This style of proof is not as common as the others I mention, but it is
another possible approach in case you get stuck. The idea here is that instead of arguing that A =⇒ B
directly, we argue that “not B” implies “not A.”

3 Vectors

3.1 Understanding Vectors

Consider the set of all real numbers, commonly denoted as R. Ignoring the technical definition, we can
think of R as the full set of non-complex numbers one can imagine on a number line (e.g., 7,−12, π,

√
2, 1.1, . . .).

We can write x ∈ R to denote that x is some arbitrary real number. More precisely, “x ∈ R” means that x
is some element in the set of real numbers.

Then in one sense, we can think of a vector as a generalization of numbers to multiple dimensions. A
vector is an ordered list of numbers. The dimension (or length) of a vector is the number of elements it
contains. So, for example,

v =

3
1
7

 and w =


4
5
2
6
0


are 3-dimensional and 5-dimensional vectors, respectively. Since each element of a vector can be some arbi-
trary real number, we can write that in the examples above, v ∈ R3 and w ∈ R5. More generally, v ∈ Rn is
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an arbitrary n-dimensional vector.1 Note that a one-dimensional vector is just a number. There is a special
word for this that will we use: a number (or 1-dimensional vector) is a scalar.

We can also define vectors geometrically. Specifically, we visualize a two-dimensional vector as an arrow
with its base at the origin (0,0) and its head at the point defined by the vector elements. For example,

Figure 1 shows the vectors u =

[
2
3

]
and v =

[
−3
1

]
on a Euclidean plane.

Figure 1: Two 2-dimensional vectors on a Euclidean plane

While intuitive, the geometric perspective of vectors falls short in higher dimensions. We can imagine ar-
rows pointing in 2- or 3-dimensional space, but we are not equipped to think about geometry in 4-dimensional
space intuitively. Still, the geometric perspective makes clear the two fundamental properties that define
any given vector: (1) vector direction and (2) vector length (also called magnitude). We will come back
to these properties.

Let’s give some examples of where vectors could be used:

• Color: Computers can represent the RGB color of a pixel with a 3-dimensional vector. The first element
defines the intensity of Red that color, the second element defines the intensity of Green, and the third
element defines the intensity of Blue. A computer can represent a wide arrange array of colors this
way. See Figure 2 for examples.

• Word Counts: Suppose there are n words in a dictionary. Then we can represent any text or document
as an n-dimensional vector where the i-th entry is the number of times that the i-th word in the
dictionary appears in that document. Note that this representation ignores the order of words, but it
is can still be informative about a text. Also note that this vector is likely to be sparse, meaning that
most entries will be zero. Any given document will only use a small fraction of the words that appear
in the dictionary.

• Investor Portfolios: Suppose there are n available stocks for an investor to purchase. If each entry of a
vector represents the number of shares that the investor owns of each stock, then an arbitrary vector
v ∈ Rn represents a portfolio, and Rn is the space of all possible portfolios.

1Here, I only consider finite-dimensional real-valued vectors as the simplest case. But it is possible to consider infinite-
dimensional vectors as well as vectors containing complex numbers. These complicate things, so for this introductory course
you will not have to worry about them.
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Figure 2: Six RGB color vectors, courtesy of Boyd and Vandenberghe, Introduction to Applied Linear Algebra

• Zero and Ones Vectors: Two common vector types that appear often enough to have special notation
are zero vectors and ones vectors. We write 0n to describe an n-dimensional vector with all entries
equal to zero, and we write 1n to describe an n-dimensional vector with all entries equal to one.

• Standard Basis Vectors: This is another common vector. A standard basis vector has a single 1 entry
and the rest zero entries. In n-dimensions, there are n standard basis vectors. The i-th standard basis
vector is written ei, and its i-th entry is a 1. Mathematically, we define the entries of a standard basis
vector by

(ei)j =

{
1 j = i

0 j 6= i

More concretely, consider the example of the 3 possible standard vectors in 3 dimensions. These are

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1


Sometimes, we use different notation for standard basis vectors in 2 or 3 dimensions. In two dimensions,
e1 and e2 can be written as i and j, respectively. In three dimensions, they become i, j, and k.

Typically, we will be focusing on vertically-oriented vectors, known as column vectors. A row vector
is horizontally-oriented. We can turn a column vector into a row vector with the transpose operation,
denoted with a superscript T . For example, 3

4
9

T

=
[
3 4 9

]
3.2 Linear Combinations of Vectors

First we define scalar multiplication of a vector. Suppose we have some vector v ∈ Rn and some
scalar c ∈ R. We can multiply the vector by the scalar cv simply by multiplying each entry of v by c. For
example,

2

3
1
7

 =

 6
2
14


Geometrically, scalar multiplication changes the length of a vector but does not change the direction.

Consider the vector u = 12 =

[
1
1

]
. In Figure 3, we illustrate the vectors defined by 3u and (−1)u. More
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generally, we want to think about all possible combinations of scalar multiplication. In the above example,
the space of all possible combinations of cu gives us a line of slope 1 through the origin. More generally, for
an n-dimensional vector v ∈ Rn, the space described by multiplying v by an arbitrary scalar c ∈ R is a line
in n-dimensional space going through the origin.2

Figure 3: Scalar multiplication of the 2-dimensional ones vector

Now we define vector addition. Mechanically, vector addition is very intuitive - we can add two vectors
v and w by adding each pair of elements. For example,[

4
9

]
+

[
1
−4

]
=

[
4 + 1

9 + (−4)

]
=

[
5
5

]
Just as we have a− b = a+ (−1)× b for scalars, vector subtraction is equivalent to vector addition after
scalar multiplying by -1, i.e., v −w = v + (−1)w.

Note a few important properties about vector addition and subtraction. First, we can only add or sub-
tract vectors that have the same dimension. Second, vector addition and subtraction are commutative. We
have that u + v = v + u. This is important to note because matrix multiplication, as we will see, is not
commutative.

The geometric intuition for vector addition is straightforward in 2 dimensions. If we add two vectors
u + v, then the resulting vector is the diagonal of the parallelogram formed by the two vectors. In other
words, we can find the head of the vector described by u + v by taking u and stacking its base at the head
of v. See Figures 4 and 5 as a visual aids.

A linear combination just combines vector addition with scalar multiplication. So for some c, d ∈ R,
cv+dw is a linear combination of v and w. With explicit values for vectors and scalars, calculating a linear
combination is simple arithmetic. For example, given

u =

1
0
3

 , v =

1
2
1

 , w =

 2
3
−1


2This statement is technically not completely true. When is it not true?
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Figure 4: Adding [2,3] and [-3,1] gives the vector [-1,4]

Figure 5: Vector addition visually, courtesy of Boyd and Vandenberghe, Introduction to Applied Linear
Algebra

We can calculate one example of linear combination

u + 4v − 2w =

1
0
3

+ 4

1
2
1

− 2

 2
3
−1

 =

1
2
9


Even more importantly, we want to be able to consider the space of all linear combinations. Consider

now three arbitrary 3-dimensional vectors, u,v,w ∈ R3 and three arbitrary scalars, c, d, e ∈ R:

1. The space of all combinations cu is a 1-dimensional line that passes through the origin (0,0,0). We
already showed this when discussing scalar multiplication.

2. Typically, the space of all combinations cu + dv is a 2-dimensional plane that passes through the
origin (0,0,0).

3. Typically, the space of all combinations cu + dv + ew fills the whole 3-dimensional space.

Importantly, note that I said *typically.* It is not always the case that the space of all linear combinations
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of n vectors is n-dimensional. Consider the two vectors

u =

1
2
3

 , v =

2
4
6


Note that v = 2u, so v is already on the line that describes all combinations of cu. Thus, the set of

all linear combinations cu + dv is still going to be a line! Similarly, if w is on a plane described by the
combinations of cu+dv, then the space described by the combinations cu+dv+ew will still be a plane, not
a 3-D space. If all the vectors under consideration are zero vectors, then the space of linear combinations is
just the origin, a single point.

The space of all linear combinations of some set of vectors is called the span of that set of vectors.

3.3 Vector Length and Angles using Dot Products

We define the dot product (also called inner product) between two n-dimensional vectors u and v to
be the sum of elementwise products. That is,

u · v = u1v1 + u2v2 + . . .+ unvn

Rather than the · notation, it is also possible to denote dot product using transposes. Instead of u · v, we
can write uTv. Dot products are commutative and distributive over addition. An example of dot product
computation is given below:

v =

−1
2
3

 , w =

 1
0
−3

 =⇒ v ·w = (−1)(1) + (2)(0) + (3)(−3) = −1 + 0− 9 = −10

Or consider the case of a linear regression with k variables. For an observation with outcome y and char-
acteristics x1, x2, . . . , xk, we can model a linear relationship between the outcome and characteristics using
coefficient vector β. That is,

y = β1x1 + β2x2 + . . . βkxk + ε = xTβ + ε

where ε is some “error” term. Note how much simpler it is to express this model as the dot product between
two vectors x and β compared to writing it as the sum of scalar multiplication.

Lastly, consider an example in economics. Suppose we have a firm that produces m goods to sell, and
in doing so it uses n input goods. We can stack these goods into an m + n dimensional quantity vector q,
where input good amounts have a negative sign. With price vector p, we can calculate the firm’s total profit
as the dot product between q and p. That is, total profit is q · p = p1q1 + . . .+ pm+nqm+n.

We can use a vector’s dot product with itself to define its length. The length (or magnitude) of a
vector v ∈ Rn is defined as

||v|| =
√
v · v =

√
v21 + v22 + . . . v2n

In 2 or 3 dimensions, the vector magnitude fits our intuitive understanding of Euclidean distance.3 In 2
dimensions, this fits perfectly with our understanding of the Pythagorean theorem. That is, given a right
triangle with sides a and b, the length of a hypotenuse c is defined by the formula c2 = a2 + b2.

We can scalar divide any vector by its length to create a vector of length 1. We say that any vector u
with length ||u|| = 1 is a unit vector. Given an arbitrary vector v, if v 6= 0, then

u =
v

||v||
3Another word for the function calculating vector length is a vector norm. Here, we only focus on the standard Euclidean

norm, but there are other vector norms you may encounter.
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is the corresponding unit vector. Our standard basis vectors i and j in 2-dimensions are unit vectors. More
generally, in two dimensions, we can define the unit vector u that makes the angle θ with the x-axis as

u =

[
cos(θ)
sin(θ)

]
This comes from the fact that cos2(θ) + sin2(θ) = 1 for any angle θ.

Dot products are also related to the angle between any two vectors. We can calculate the angle θ between
any two vectors u and v using the cosine formula below:

u · v
||u|| ||v||

= cos(θ)

Note a few things about this formula:

• If two vectors are perpendicular (also called orthogonal), there is a 90◦ right angle between them.
Since cos(90◦) = 0, then this means that the dot product between them is 0. This is an important
fact: perpendicular vectors have v ·w = 0. We can also show that this means that ||v + w||2 =
||v||2 + ||w||2. To see this, note that

||v + w||2 = (v + w) · (v + w) = v · v + v · w + w · v + w · w = ||v||2 + ||w||2

This is a useful fact that we can use to take a vector and find vector(s) perpendicular to it. For

example, consider the vector u =

[
4
2

]
. Arbitrary vector v =

[
a
b

]
∈ R2 is perpendicular if we have

4a+ 2b = 0

There are many pairs of a and b we can use to make this equation true. For example, a = 1 and
b = −2. Our system is underdetermined, and so there are many possible vectors perpendicular to u.

• If two vectors are both unit vectors (that is, both of them have length 1), then the denominator of the
left-hand side of the cosine formula goes away, and we have that u · v = cos(θ).

• The sign of the dot product gives us an idea about whether the angle between two vectors is acute or
obtuse. Since cos(θ) is positive when θ < 90◦, then the dot product must be positive when the angle
between two vectors is acute. Similarly, the dot product must be negative when the angle between two
vectors is obtuse. For example, the following dot product

u =

[
4
1

]
, u =

[
−1
3

]
, u · v = (4)(−1) + (1)(3) = −1

tells us that the angle between u and v is acute. If we wanted, we could use the cosine formula to
calculate the exact angle.

The last two items in this section to cover are two useful inequalities. The is called the Cauchy-Schwarz
inequality. It states that the absolute value of the dot product between two vectors is less than or equal
to the product of the their two lengths. More precisely, for u,v ∈ Rn

|u · v| ≤ ||u|| ||v||

Using the fact that | cos(θ)| ≤ 1, this is a direct result of the cosine formula.

Lastly, we have the triangle inequality. This is a direct result of Cauchy-Schwarz. It states that

||u + v|| ≤ ||u||+ ||v||

The triangle inequality also has a nice geometric interpretation from which it gets its name. That is, for any
triangle, the sum of length of any two of its sides must be greater than or equal to the length of its third
side.
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Figure 6: The triangle inequality, visualized. Courtesy of Wikipedia

3.4 Vector Review Questions

3.4.1 Vector Addition and Linear Combinations

1. Draw v =

[
4
1

]
and w =

[
−2
2

]
and v + w and v −w in a single xy-plane.

2. If v + w =

[
5
1

]
and v −w =

[
1
5

]
, compute and draw the vectors v and w.

3. Describe geometrically (line, plane, or all of R3) all linear combinations of1
2
3

 and

3
6
9


4. Describe geometrically (line, plane, or all of R3) all linear combinations of1

0
0

 and

0
2
3


5. Describe geometrically (line, plane, or all of R3) all linear combinations of2

0
0

 and

0
2
2

 and

2
2
3


6. What values of c and d give

c

[
1
2

]
+ d

[
3
1

]
=

[
14
8

]
Express this question as two equations for the coefficients c and d in the linear combination.

7. Challenge: Write down three equations for c, d, e so that cu + dv + ew = b. Find c, d, e.

u =

 2
−1
0

 v =

−1
2
−1

 w =

 0
−1
2

 b =

1
0
0
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8. Challenge: How many corners does a cube have in 4 dimensions? How many 3D faces? How many
edges? A typical corner is (0, 0, 1, 0). A typical edge goes to (0, 1, 0, 0).

3.4.2 Vector Lengths and Angles Using Dot Products

9. Calculate the dot products u · v and u ·w and u · (v + w) for

u =

[
−0.6
0.8

]
v =

[
4
3

]
w =

[
1
2

]
10. For the vectors in the previous problem, compute the lengths ||u|| and ||v|| and ||w||. Check the

Cauchy-Schwarz inequality for |u · v| ≤ ||u|| ||v|| and |v ·w| ≤ ||v|| ||w||.

11. Find unit vectors in the directions of v and w in Problem 1.

12. For any unit vectors v and w, find the dot products of (a) v and −v, and (b) v + w and v-w.

13. Describe every vector w = (w1, w2) that is perpendicular to v = (2,−1).

14. All vectors perpendicular to v = (1, 1, 1) lie on a in 3 dimensions. The vectors perpendicular
to both (1,1,1) and (1,2,3) lie on a .

15. Find the angle θ between v = (3, 1) and w = (−1,−2).

16. Find the angle θ between v = (2, 2,−1) and w = (2,−1, 2).

17. Find the angle θ between v = (1,
√

3) and w = (−1,
√

3).

18. With v = (1, 1) and w = (1, 5) choose a number c so that w− cv is perpendicular to v. Then find the
formula for c starting from any nonzero v and w.

19. How long is the vector v = (1, 1, . . . , 1) in 9 dimensions? Find a unit vector u in the same direction as
v and a unit vector w that is perpendicular to v.

20. Challenge: In the xy plane, when could four vectors v1, v2, v3, and v4 not be the four sides of a
quadrilateral?
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4 Matrices

4.1 Overview

We can form a matrix by horizontally concatenating n vectors of dimension m. This gives us a matrix
A ∈ Rm × Rn. Another way of saying it is that a matrix with m rows and n columns is an m by n matrix.
Typically, we define matrices with capital letters. Matrix

A =

1 2
3 4
5 6


is a 3 by 2 matrix. The (i,j)-th entry of a matrix is the entry in row i and column j. For example, A(1,2) in
the example above is 2, whereas A(2,1) is 3.

Let’s go over some simple categorizations of matrices:

• A square matrix has an equal number of columns and rows, i.e., m = n.

• A diagonal matrix has all entries off the main diagonal all equal to zero. The main diagonal consists
of all (i, j)-th entries where i = j. The following is an example of a 3 by 3 diagonal matrix:

A =

a 0 0
0 b 0
0 0 c


for some a, b, c ∈ R.

• The identity matrix is an n by n diagonal matrix with every entry on the main diagonal equal to 1.
We denote this as In or just I.

• A triangular matrix has either all entries below the main diagonal or above the main diagonal equal
to zero. If all entries below the main diagonal are zero, then it is an upper triangular matrix. One
example of an upper triangular matrix is

A =

2 1 −3
0 4 7
0 0 5


A lower triangular matrix has entries above the main diagonal equal to zero.

• A symmetric matrix has every (i, j)-th entry equal to every (j, i)-th entry. Below is one example of
a symmetric matrix:

A =

 2 1 −3
1 4 7
−3 7 5


4.2 Multiplying a Matrix and a Vector

Now, we can define matrix-vector multiplication. An m×n matrix can be multiplied by an n-dimensional
vector to get an m-dimensional vector output. It’s important to note that the vector dimension *must* be
equal to the number of columns in the matrix. Otherwise, matrix-vector multiplication is not well-defined.
The number of rows gives us the dimension of the resulting vector. There are two ways to conceptualize the
mechanics of matrix-vector multiplication:

1. Row / Dot Product Approach: In this picture, multiplying m × n matrix A by n-dimensional
vector x gives us

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
am1 am2 · · · amn



x1
x2
· · ·
xn

 =


aT1·
aT2·
· · ·
aTm·



x1
x2
· · ·
xn

 =


a1· · x
a2· · x
· · ·

am· · x
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where aT1· is the row vector of the entries in the first row of matrix A. In words, this approach forms
the result of Ax by taking the dot product of each row of A with x.

2. Column / Linear Combination Approach: In this picture, multiplying m × n matrix A by n-
dimensional vector x gives us a linear combination of the columns in A, where the entries of x are the
multiplying scalars of each column. That is,

Ax = x1


a11
a21
· · ·
am1

+ x2


a12
a22
· · ·
am2

+ · · ·+ xn


a1n
a2n
· · ·
amn


These two approaches are mechanically equivalent. I personally find it easier to do computation with the
dot product approach, but it is often easier to get geometric intuition with the linear combination approach.

Another way to think about a matrix is as a linear transformation. A matrix can take any arbitrary
vector x and, through matrix-vector multiplication, output a new vector. Let’s call this new vector b. So
the matrix A in the equation Ax = b can be viewed as a linear transformation that takes vector x and
outputs b. The columns of a matrix define the result of applying the linear transformation to each standard
basis vector. Grant Sanderson at the YouTube channel 3Blue1Brown has an incredibly helpful video on this
concept, with dynamic visualizations of matrices as linear transformations.4 For example, we can call the
following 2-D matrices rotation matrices:

A =

[
0 −1
1 0

]
, B =

[
−1 0
0 −1

]
The matrix A multiplied by x gives a 90◦ counter-clockwise rotation of x, and the matrix B multiplied by
x gives a 180◦ counter-clockwise rotation of x.

Lastly, we can think of matrices as describing a system of linear equations. Suppose we want to solve
the following simple system of 2 linear equations with 2 unknown variables:

3x1 − 4x2 = 2

9x1 + x2 = 1

Hopefully, this should not be too difficult for you to solve algebraically. But what if we had a very large
number of equations and unknown variables? This complicates the standard algebraic approach, and a
matrix-representation approach becomes preferable. In the example above, we can equivalently write

A3 −4
9 1


xx1
x2


= b2

1


So solving for x1 and x2 is equivalent to finding vector x that solves Ax = b. But how do we know there
even exists a solution to Ax = b? This can be answered by thinking about the properties of matrix A.

4.3 Column Space and Rank of Matrices

We begin this section by defining new terms related to our earlier discussion on linear combinations of
vectors. We say that a set of vectors are dependent if one of the vectors in that set is a linear combination
of some of the other vectors. For example, consider

x =

1
1
6

 , y =

2
4
0

 , z =

5
9
6


4I highly recommend his whole series of videos on The Essence of Linear Algebra as a useful aid for ideas covered in this

Math Camp and your CAPP Linear Algebra course.
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Note that we have x+ 2y = z, so this set of vectors are dependent. A set of vectors is independent if none
of the columns are linear combinations of the others. For example, consider

x =

1
2
3

 , y =

0
4
5

 , z =

0
0
6


There is no way to linearly combine two of these vectors to get the third.

The notion of dependence and independence is closely related to our earlier idea of the dimensionality
of the space of all linear combinations of vectors. In the first example above, because z lies on the plane
spanned by x and z, the set of all linear combinations is just a 2-D plane. Whereas in the second example,
because all three vectors are independent (in a sense, they point in different “directions”), then the space of
all linear combinations is all of R3. See Figure 7 for geometric intuition about vector independence.

Figure 7: Vector dependence and independence, courtesy of Wikipedia. Vectors u and v are independent,
defining plane P . Vectors u, v, and w are dependent because they are all in the same plane. Vectors u and
j are on the same line, so they are dependent.

Since matrix columns are vectors, we can apply the idea of independence or dependence to them. The
columns of a matrix are independent if no column can be described as a linear combination of the other
columns. For matrices, the space of all linear combinations of columns is known as its column space. Using
the column / linear combination approach to understanding matrix-vector multiplication, we can equiva-
lently say that the column space of A is the set of all vectors Ax. A vector b is in the column space of A if
there exists some x such that Ax = b. The column space of matrix A is sometimes denoted C(A).

How do we characterize the dimension of a matrix’s column space? This can be done by counting the
number of independent columns! Consider the case of a matrix A with m-dimensional columns. There are
4 possibilities for its column space:

1. With 3 independent columns, the column space C(A) is all of R3.

2. With 2 independent columns, the column space is a plane in R3 going through the origin.

3. With 1 independent column, the column space is a line in R3 going through the origin.

4. If A is a matrix of all zeros, then the column space is just the origin (0,0,0). Every vector, when
multiplied by A, gets mapped to the origin.

The dimension of the column space (equivalent to the number of independent columns) is r, we say that
this matrix’s rank is r. We denote this rank(A) = r. 5 If a matrix has rank r, then the first r columns are
a basis for the column space. Loosely speaking, a basis for a given space is a set of vectors whose linear
combinations can reach any point on that space.

5A matrix’s row space can be defined analogously to a column space. Remarkably, an important result you will see later
is that the number of independent columns is equal to the number of independent rows. So we can identify a matrix’s rank by
looking at either its row space or column space.
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4.4 Multiplying a Matrix and a Matrix

Our last topic will involve multiplying two matrices, A and B. If the row-length of A is equal to the
column-length of B, then we can multiply them together to get a new matrix AB. If not, then matrix
multiplication is not defined. Specifically, suppose that A is a m× n matrix and B is a n× p matrix. Then
AB will be a m× p matrix.

A
(m×n)

times B
(n×p)

= AB
(m×p)

We call two matrices conformable if they can be multiplied, that is, if the row-length of A is equal to the
column-length of B.

The mechanics for multiplying two matrices is really just an extension of matrix-vector multiplication. We
can think of a vector as a matrix with just one row. So we can extend our two perspectives on matrix-vector
multiplication accordingly:

1. Dot product view: The (i, j)-th entry of product AB is equal to the dot product of the i-th row of
A and the j-th column of B.

2. Linear combination view: The i-th column of product AB is a linear combination of all columns
of A, with scalar weights described by the i-th column of B.

Let’s do a simple matrix multiplication as an example:[
1 2
3 4

] [
5 6
7 8

]
=

[
(1)(5) + (2)(7) (1)(6) + (2)(8)
(3)(5) + (4)(7) (3)(6) + (4)(8)

]
=

[
19 22
43 50

]
Some standard facts about matrix multiplication:

• Recall that we defined the identity matrix I as a matrix with 1s along the main diagonal and 0s
elsewhere. For any matrix A, we have AI = A and IA = A, if conformable. In words, the identity
matrix times any other matrix returns the same matrix.

• Matrix multiplication is not commutative. This means that, generally speaking,

AB 6= BA

So unlike scalar multiplication or matrix and vector addition, order very much matters. Depending on
the shapes of A and B, it may be the case that AB is well-defined, but BA is not.

• Even though it is not commutative, matrix multiplication is associative. That is, for matrices A,B,C

(AB)C = A(BC)

So we can change parentheses in the context of matrix multiplication without changing the final result.

Recall that we conceptualized a matrix as a linear transformation. Matrix multiplication of A and B to get
new matrix AB can be thought of as the composition of two linear transformations. So, for example, if A
is the matrix that rotates all vectors counter-clockwise by 90◦, then A times A (i.e., A2) should be equal to
the matrix that rotates all vectors by 180◦. We can confirm this:

A2 =

[
0 −1
1 0

] [
0 −1
1 0

]
=

[
−1 0
0 −1

]
which we know to be the 180◦ rotation matrix.

I will add one more way to consider matrix multiplication, through outer products. The outer product
of two vectors u and v is a matrix defined by uvT , where vT is a row vector. We can write matrix
multiplication as the sum of outer products:

AB =
[
a1 . . . an

]
columns of A

bT
1

. . .
bT
n


rows of B

= a1b
T
1 + a2b

T
2 + . . .+ anb

T
n
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4.5 Matrix Practice Questions

1. Multiply Ax, By, and Cz:

Ax =

2 1 2
4 2 4
0 1 0

1
2
5


By =

1 0 0
1 1 0
1 1 1

 4
4
10


Cz =

1 0 0
0 1 0
0 0 1

z1z2
z3


2. In the previous question, how many independent columns does A have? How many independent

columns does B have? How many independent columns are in A+B?

3. Describe the column space of the following matrices: a point, a line, a plane, or all of R3:

A1 =

2 2
1 1
5 6


A2 =

1 0 0
1 1 0
1 1 1


A3 =

1 5
2 10
1 5


A4 =

0 0
0 0
0 0


4. Complete A and B so that they are rank one matrices. What are the column spaces of A and B?

What are the row spaces of A and B?

A =

[
3
5 15

]
B =

[
1 2 −5
4

]

5. Set up the system of equations

x1 + 3x2 = 4

2x1 + 4x2 = 6

in the form Ax = b. Solve for x1 and x2, and relate this solution to the column space of A.

6. Which numbers q would leave A with two independent columns?

A =

1 0 2
3 1 9
5 0 q


A =

1 4 7
2 5 8
3 6 q
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7. Suppose A times x equals b. If you add b as an extra column of A, explain why the rank r (number
of independent columns) stays the same.

8. Multiply the following matrices:

AB =

1 0 0
1 1 0
1 1 1

 1 0 0
−1 1 0
1 −1 1


AB =

[
1 2 3

] 4
5
6


AB =

4
5
6

 [1 2 3
]

9. Test the truth of the associativity of matrix multiplication, i.e., (AB)C = A(BC), for[
1 2
0 1

] [
1 3
0 1

] [
1 4
0 1

]
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